Prandtl’s Mixing Length

Remember turbulent momentum equation

\[\frac{\partial\rho\overline{v}}{\partial t}+\nabla\cdot\rho\overline{vv}=-\nabla\overline{p}-\nabla\cdot\tau^{T}+\rho\vec{g}\]

We can use two models for the turbulent viscosity: Eddy Viscosity and Prandtl’s Mixing Length Model.

Eddy Viscosity

Using Newton’s viscosity model

\[\tau_{xy}^{t}=-\mu^{t}\frac{\partial\overline{v_{x}}}{\partial y}\]

but unfortunately, \(\mu=\mu\left(\vec{x}\right)\) and non-linear, so instead we use PML

Prandtl’s Mixing Length Model

Momentum transfer at discrete intervals only after the eddy mass (\(\delta m\)) has moved an entire length (\(l\)).

\[\begin{split}\underbrace{\delta m\delta v_{x}}_{\substack{\text{momentum}\\ \text{gain in the x}\\ \text{direction} } }\;\;\Longrightarrow\;\;\underbrace{\frac{\delta m}{\delta t}\delta v_{x}}_{\substack{\text{force}} }\;\;\Longrightarrow\;\;\tau^{t}=\frac{F}{A}=\underbrace{-\frac{1}{A}\frac{\delta m}{\delta t}\delta v_{x}}_{\substack{\text{shear stress}\\ \text{acting against}\\ \delta v_{x}\text{ over area }A } }\end{split}\]

By assuming that \(l\) is very small:

\[ \begin{align}\begin{aligned}\delta v_{x}\approx\frac{\delta\overline{v_{x}}}{\delta y}l\\and applying continuity (or matching units)\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\frac{1}{A}\frac{\delta m}{\delta t}=\rho\left|v_{y}^{'}\right|\\And therefore we have\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\frac{\tau^{t}}{\rho}=-l\left|v_{y}^{'}\right|\frac{d\overline{v_{x}}}{dy}=-\varepsilon_{M}\frac{d\overline{v_{x}}}{dy}\\Applying Prandtl's Assumptions:\end{aligned}\end{align} \]
  • perpendicular velocity is proportional to the flow velocity

    \[\left|v_{y}^{'}\right|=k_{1}\left|v_{x}^{'}\right|\]
  • fluctuation in x direction velocity is propotional to the rate of change of x direction velocity times the length moved

    \[v_{x}^{'}=k_{2}\delta v_{x}=k_{2}l\frac{d\overline{v_{x}}}{dy}\]

    and, minorly, \(l=ky\)

    \[\frac{\tau^{t}}{\rho}=-\left(ky\right)\left|k_{1}\left|k_{2}\left(ky\right)\frac{d\overline{v_{x}}}{dy}\right|\right|\frac{d\overline{v_{x}}}{dy}=-k^{2}y^{2}\left(\frac{d\overline{v_{x}}}{dy}\right)^{2}\]

therefore

\[\frac{d\overline{v_{x}}}{dy}=-\frac{1}{ky}\sqrt{\frac{\tau^{t}}{\rho}}\]

and we can assume that all of the turbulent stress comes from the wall (\(\tau^{t}=\tau^{w}\)).

By non dimensionalizing with

\[v^{*}=\frac{v_{x}}{\sqrt{\nicefrac{\tau^{t}}{\rho}}}\;\;\&\;\;y^{*}=\frac{y\sqrt{\nicefrac{\tau^{t}}{\rho}}}{v}\]

we get

\[\frac{dv^{*}}{dy^{*}}=\frac{1}{ky^{*}}\;\;\therefore\;\;v^{*}=\frac{1}{R}\ln\left(y^{*}\right)+C\]
Figure 1: Universal log turbulent profile

and we can evaluate how much this is using Fanning’s friction factor

\[\tau^{w}=\frac{1}{2}f_{i}\rho u^{2}\;\;\therefore\;\;\sqrt{\frac{\tau^{w}}{\rho}}=\sqrt{\frac{1}{2}f_{i}}u\]

and

\[y^{*}=Re\frac{\sqrt{\nicefrac{\tau^{w}}{\rho}}}{\nu}\frac{y}{D}\approx Re\frac{1}{40}\frac{y}{R}\]

Bibliography