Vector Operators

Based on material from (Bird, et. al. 2007).

The vector operators are tensor math operators that are used throughout continuum mechanics. These identities are prerequisite to many of the continuum mechanics problems (e.g. the falling film problem). They should be remembered and used. I personally used flashcards to remember the expressions, although many of them can be determined through use of the gradient (\(\nabla\)) operator and the inner product operator (\(\cdot\)).

Gradient (\(\nabla\))

Table 1: Vector operators for gradient
Property Expression
Commutative $\nabla\left(fg\right)=f\nabla g+g\nabla f$
Cartesian $\nabla f=\frac{\partial f}{\partial x}\hat{x}+\frac{\partial f}{\partial y}\hat{y}+\frac{\partial f}{\partial z}\hat{z}$
Cylindrical $\nabla f=\frac{\partial f}{\partial r}\hat{r}+\frac{1}{r}\frac{\partial f}{\partial\theta}\hat{\theta}+\frac{\partial f}{\partial z}\hat{z}$
Spherical $\nabla f=\frac{\partial f}{\partial r}\hat{r}+\frac{1}{r}\frac{\partial f}{\partial\theta}\hat{\theta}+\frac{1}{r\sin\left(\theta\right)}\frac{\partial f}{\partial\phi}\hat{\phi}$

Divergence (\(\nabla \cdot\))

Table 2: Vector operators for divergence
Property Expression
Commutative $\nabla\cdot\left(f\vec{v}\right)=f\left(\nabla\cdot\vec{v}\right)+\vec{v}\cdot\left(\nabla\cdot f\right)$
Cartesian $\nabla\cdot f=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}$
Cylindrical $\nabla\cdot f=\frac{1}{r}\frac{\partial\left(rv_{r}\right)}{\partial r}+\frac{1}{r}\frac{\partial v_{\theta}}{\partial\theta}+\frac{\partial v_{z}}{\partial z}$
Spherical $\nabla\cdot f=\frac{1}{r^{2}}\frac{\partial\left(r^{2}v_{r}\right)}{\partial r}+\frac{1}{r\sin\left(\theta\right)}\frac{\partial\left(\sin\left(\theta\right)v_{\theta}\right)}{\partial\theta}+\frac{1}{r\sin\left(\theta\right)}\frac{\partial v_{\phi}}{\partial\phi}$

Laplacian (\(\nabla^{2}\))

Table 3: Vector operators for the Laplacian
Property Expression
Cartesian $\nabla^{2}f=\frac{\partial^{2}f}{\partial x^{2}}+\frac{\partial^{2}f}{\partial y^{2}}+\frac{\partial^{2}f}{\partial z^{2}}$
Cylindrical $\nabla^{2}f=\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}}\frac{\partial^{2}f}{\partial\theta^{2}}+\frac{\partial^{2}f}{\partial z^{2}}$
Spherical $\nabla^{2}f=\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}\sin\left(\theta\right)}\frac{\partial}{\partial\theta}\left(\sin\left(\theta\right)\frac{\partial f}{\partial\theta}\right)+\frac{1}{r^{2}\sin^{2}\left(\theta\right)}\frac{\partial f}{\partial\phi}$

Bibliography