Non-Dimensional Parameters

This material is taken from (Bird, et. al. 2007). The non-dimensional parameters are all over the field of fluids and thermal hydraulics. Their importance is, in my opinion, overstated. Any paper worth its salt will describe the non-dimensional number and its calculation before using it as a parameter. However, the idea that one can create parameters comparing effects without some sort of unit change is important, and several numbers, such as \(Re\) and \(Pr\) are seen a lot in the literature.

Table 1: Non-Dimensional Parameters and their definitions
Symbol Name Formula Physical Meaning
$Re$ Reynold's $\frac{\rho vD}{\mu}$ $\frac{\text{inertial force}}{\text{viscous force}}$
$Pr$ Prandtl $\frac{\nu}{\alpha}=\frac{c_{p}\mu}{k}$ --
$Gr$ Grashof $\frac{g\beta\Delta TD^{3}}{\nu^{2}}$ --
$Br$ Brinkman $\frac{\mu v^{2}}{k\Delta T}$ $\frac{\text{heat production by viscous dissipation}}{\text{heat transport by conduction}}$
$Pe$ Peclet $RePr$ $\frac{\text{convection heat transport}}{\text{conduction heat transport}}$
$Ra$ Rayleigh $GrPr$ --
$Ec$ Eckert $\frac{Br}{Pr}$ --
$Fr$ Froude $\frac{\rho v}{pgD}$ $\frac{\text{inertial force}}{\text{gravitational force}}$
-- -- $\frac{Gr}{Re^{2}}$ $\frac{\text{buoyant force}}{\text{inertial force}}$
$Ma$ Mach $\frac{v}{c}$ --
$Nu$ Nusselt $\frac{hD}{k}$ $\frac{\text{convection}}{\text{conduction}}$
$We$ Weber $\frac{Dv^{2}\rho}{\sigma}$ $\frac{\text{inertial force}}{\text{surface tension}}$
$Bi$ Biot $\frac{hD}{k}$ $\frac{\text{convection}}{\text{conduction}}$

Bibliography